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ABSTRACT 
 
 
 With the rapid employment of wireless networks commercially, the military is 

seeking viable solutions for providing high-speed wireless network throughout the battle 

space. The IEEE 802.11a wireless LAN presents an attractive solution, providing up to 

54 Mbps of data-link bandwidth. Moreover, it operates in the less congested 5-GHz U-

NII band and possesses more operating channels.  

 This research implemented two prototype systems using low-cost commercially 

available hardware. The Cisco Aironet 1400 wireless bridge and the Proxim Tsunami 

MP.11a wireless system were chosen for their superior specifications and for their reputa-

tion of being market leaders in IEEE 802.11 wireless products. The performances of the 

prototype systems were evaluated in three operational environments (land, water and 

vegetation). The data collected were then compared to the theoretical performance.  
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EXECUTIVE SUMMARY 
 
 
 

With the rapid commercial advancement and deployment of wireless LAN, over 

the past decade, high-speed wireless LANs have become a viable option for the military. 

Not only has the technology matured, it has also become affordable due to mass produc-

tion. The wireless LAN provides three main features that are vital for military deploy-

ment – mobility, ease of deployment, and flexibility. This research implemented two pro-

totype systems using commercially available low-cost hardware. The performances of 

these prototype systems were evaluated in three operational environments. The data col-

lected were then compared to the theoretical performance.  

The objectives of this research are to answer the following questions:  

• What specific commercially available low-cost hardware can be used to 
implement an IEEE 802.11a network outdoors?  

• What is the performance capability of the hardware under various opera-
tional environments?  

• How can the use of directional antennas improve the performance capabil-
ity of an IEEE 802.11a network outdoors?  

The first question was answered by implementing IEEE 802.11a networks, using 

commercially available low-cost hardware developed by Cisco and Proxim.  Cisco and 

Proxim were chosen because they are market leaders in IEEE 802.11 wireless equipment 

and their product specifications are superior. The breakdown of the prototype systems 

and their cost are shown in Table 1 below. 

  

 xix



 

Hardware Quantity Total Price  

Dell Latitude C840 1 US$2,000 

Sony VAIO 1 US$2,000 

Cisco Aironet 1400 Series Wireless Bridge 2 US$6,690 

Proxim Tsunami MP.11a Wireless System 1 set US$2,400 

Xantrex Power Supply 2   US$500  

Total Price of Hardware   US$13,590 

Table 1.  Prototype Hardware Cost 

 

To answer the second question, the prototype systems were tested under the fol-

lowing three operational environments: 

• Land (Area surrounding NPS with LOS) 

• Water (Along the coast of Monterey Bay) 

• Vegetation (Hills of La Mesa Housing) 

From the performance data collected, the maximum range recorded for land, wa-

ter and vegetation are shown in Tables 2 and 3.  

 

Operational Environment Maximum Range Recorded at Data-
link Rate of 54 Mbps 

Land 3,000m 
Water 1,750m 

Vegetation      75m 

Table 2.  Cisco Aironet 1400 Wireless Bridge 

  

 

 xx



 

Operational Environment Maximum Range Recorded at a Op-
timal Data-link Rate of 36 Mbps 

Land 2,350m 
Water    250m 

Vegetation      75m 

Table 3.  Proxim Tsunami MP.11a Wireless System 

Test points that deviated from the LOS path resulted in a total loss of signal (i.e., 

IEEE 802.11a signals require LOS). The average data throughputs for the respective data-

link rates are summarized in Table 4. This was based on the best data throughput ob-

tained in vegetation. The optimal data-link rate for the Proxim Tsunami MP.11a wireless 

system was 36 Mbps. At the data-link rates of 48 and 54 Mbps, the data throughput was 

low with a very high packet error rate. Generally, file transfer was not successful. 

 

Average Data Throughputs (Mbps) Data-link Rate 
(Mbps) Cisco Proxim 

6 2.70 2.79 
9 4.92 5.27 
12 5.75 5.82 
28 8.65 8.33 
24 10.61 9.41 
36 14.70 10.65 
48 19.50 - 
54 20.62 - 

Table 4.  Data-link Rate versus Average Data Throughputs (In Vegetation) 

 

For both prototype systems, use of encryption (WEP or AES) had negligible ef-

fect on the data. The use of a longer packet in the Cisco Aironet 1400 wireless bridge re-

sulted in higher packet error rate. Despite this, the data throughput was not affected, as 

each packet was capable of transferring more data bits for the same overhead. It was also 

observed in both systems that data throughput decreased and the packet error rate in-

creased with increasing range. The receiver sensitivity for the Cisco Aironet 1400 wire 

 xxi



less bridge was determined to be approximately 5 dB less than its specifications. The re-

ceiver sensitivity for the Proxim Tsunami MP.11a wireless system was in accordance 

with its specifications. 

Finally, all tests were performed using directional antennas. The range perform-

ance increased significantly over the omni-directional antenna. The performance data for 

omni-directional antenna can be found in Maj. Goh Chee Seng’s thesis [1]. 

The performance data collected in this research showed that IEEE 802.11a net-

work is a viable solution for the military as a high-speed LAN. Despite their range limita-

tion, IEEE 802.11a networks have more system capacity (eight channels compared to 

three for IEEE 802.11g) and occupy a less congested frequency band (5 GHz compared 

to 2.4 GHz). The range limitation can be overcome by designing the wireless LAN 

around the Standard Operating Procedure (SOP).  

For example, in the case of armor infantry, the access points can be used on the 

Armor Personnel Carrier (APC), where troops are likely to be within 100 m of the APC. 

As for APC to APC links or APC to Unmanned Aerial Vehicle (UAV) links, a higher 

gain adaptive antenna could be used. Similarly for the Navy, higher gain adaptive an-

tenna could be used to bridge the distance or the data-link rate could be compromised for 

distance.  
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I. INTRODUCTION 

A. PURPOSE AND BENEFIT OF RESEARCH  

The Internet has revolutionized the way information is exchanged throughout the 

world. A simple click of the mouse sends an email to a friend on the other side of the 

world within seconds. If this same speed of communication were available for military 

commanders, they would have an advantage over their adversaries. However, in the past, 

this was only possible when commanders had access through a wired Ethernet port. 

Over the past decade, the rapid commercial advancement and deployment of wire-

less LANs made high-speed wireless LANs a viable option to the military. Not only has 

the technology matured, it has also become affordable due to mass production. The wire-

less LAN provides three main features that are vital for military deployment – mobility, 

ease of deployment, and flexibility. This research implemented two prototype systems us-

ing commercially available low-cost hardware. The performances of these prototype sys-

tems were evaluated under three operational environments. The data collected were then 

compared to the theoretical performance.  

The objectives of this research were to answer the following questions:  

• What specific commercially available low-cost hardware can be used to 
implement an IEEE 802.11a network outdoors?  

• What is the performance capability of the hardware under various opera-
tional environments?  

• How can the use of directional antennas improve the performance capabil-
ity of an IEEE 802.11a network outdoors? 

B. THESIS ORGANIZATION  

Chapter II and III provide the background knowledge to understand the discussion 

presented in this research. 

Chapter II provides an overview of the IEEE 802.11 standards and related secu-

rity features (Wired Equivalent Privacy, WEP and Wi-Fi Protected Access, WPA).  

Chapter III discusses the IEEE 802.11a standard, which includes key parameters 

of the standard, as well as the composition and functions of the MAC and PHY layer.  
1 



Chapter IV provides the specifications of the prototype systems, as well as the 

supporting software and hardware used in actual field-testing.  

Chapter V covers the laboratory setup and testing, the test plans for all three op-

erational environments, and the performance data collected for the Cisco Aironet 1400 

wireless bridge.   

Chapter VI covers the laboratory setup and testing, and the performance data col-

lected for the Proxim Tsunami MP.11a wireless system. 

Chapter VII summarizes this research and recommends future research. 

C. PREVIOUS WORK 

The performance data collected in this research will assist military commanders in 

making decisions on what WLAN to deploy for the military. Current research of the per-

formance of the IEEE 802.11a network in an outdoor environment is very limited, as 

most commercial products are geared toward indoor environments. Recently, more out-

door IEEE 802.11a products have emerged in the market. They are mainly for bridging 

between two points. However, as most of these bridges have point-to-multipoint capabil-

ity, they can perform the role of an Access Point (AP).  

Maj. Goh Che Seng conducted detailed research into IEEE 802.11a signals, using 

APs with omni-directional antenna. From his research, it was shown that IEEE 802.11a 

signals needed LOS and did not perform well beyond 700 ft, a distance at which the data-

link rate falls to less than half of the original 54 Mbps [1]. 

Cpt. Walter N. Currier Jr. carried out a similar study on the performance of IEEE 

802.11b signals. His research determined that IEEE 802.11b signal propagation could be 

modeled against the two-rays or free-space propagation models [2]. Despite the longer-

range capability of IEEE 802.11b signals, IEEE 802.11b has smaller system capacity and 

is expected to face more interference when deployed due to the limited frequency chan-

nels available.  
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II. BACKGROUND 

A. CHAPTER OVERVIEW 

This chapter discusses the IEEE 802.11 standard and its associated “family tree.” 

The security protocol used and its vulnerabilities are also discussed.  

B. IEEE 802.11 INTRODUCTION 

The first IEEE 802.11 standard [3] was established in 1997. This addressed the 

Medium Access Control (MAC) and physical (PHY) layers separately. Three different 

PHY layers were specified, namely Infrared (IR), Frequency Hopping Spread Spectrum 

(FHSS) and Direct Sequence Spread Spectrum (DSSS). Both the FHSS and DSSS are in 

the Federal Communications Committee’s (FCC) 2.4 GHz Industrial, Scientific and 

Medical (ISM) band. The operations for all three PHY layers were specified at 1 and 2 

Mbps. The IEEE 802.11b and 802.11a standards were subsequently released in 1999. 

Due to easier implementation of DSSS compared to Orthogonal Frequency Division Mul-

tiplexing (OFDM), IEEE 802.11b products hit the consumer market first. The higher bit 

rate of IEEE 802.11b gave wireless LANs worldwide recognition. Most recently, IEEE 

802.11g products are emerging in the market. The relation of the four main IEEE 802.11 

standards to the Open Systems Interconnection (OSI) layers is depicted in Figure 1. The 

802 Logical Link Control (LLC) and 802.11 MAC are part of the OSI data-link layer. 

The 802.11, 802.11b, 802.11a and 802.11g differ in the OSI physical layer, where differ-

ent frequency bands and modulations are used. [4].  

 

OSI Physical 
Layer 

OSI Data-link 
Layer 

802.11g 802.11a802.11b802.11

802.11 MAC 

802 LLC 
 

 

 

 

Figure 1. The OSI Layers and Corresponding IEEE 802.11 Standards (From Ref. 4.)  
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C. IEEE 802.11 STANDARDS 

The following sections briefly describe the IEEE 802.11 standards that are dis-

cussed in this research – IEEE 802.11b, IEEE 802.11a, IEEE 802.11g and IEEE 802.11i. 

This information is obtained from the IEEE standard [3]. 

1. IEEE 802.11b 

The IEEE 802.11b standard was released in 1999, specifying a higher bit rate of 

11 Mbps and operation using DSSS in the 2.4 GHz ISM band. This is usually referred to 

as high-rate DSSS (HR/DSSS). It has the options of 5.5 Mbps and 11 Mbps, as well as 1 

Mbps and 2 Mbps for backward compatibility with the legacy IEEE 802.11 standards. 

Three non-overlapping channels are allocated, providing a total available bandwidth of 

83.5 MHz. The higher data-link rates are achieved using Quadrature Phase Shift Keying 

(QPSK) with either Complementary Code Keying (CCK) or Packet Binary Convolutional 

Coding (PBCC). The IEEE 802.11 working group adopted CCK due to its interoperabil-

ity with the legacy IEEE 802.11 standards. Not withstanding, PBCC is also defined as an 

option in IEEE 802.11b [5].  

The block diagram for CCK modulations is shown in Figure 2. For 11-Mbps op-

eration, the CCK uses 64 base spreading code words with good autocorrelation and cross-

correlation properties. The input data is scrambled before passing to the data multiplexer. 

After the data multiplexer, six of the eight bits are used to choose one of the 64 complex 

codes. The chipping rate is maintained at 11 Mbps, while the symbol rate is decreased to 

1.375 Mbps. Together with the remaining two bits from the data multiplexer, the Differ-

ential QPSK (DQPSK) modulator generates the required in-phase (I) and quadrature-

phase (Q) data for modulation. For 5.5 Mbps, four complex codes are used instead of 64 

[5]. 
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2. IEEE 802.11a 

The IEEE 802.11a operates in the 5-GHz Unlicensed National Information Infra-

structure (U-NII) and has a data-link rate ranging from 6 to 54 Mbps. Orthogonal Fre-

quency Division Multiplexing (OFDM) is the main feature in IEEE 802.11a that allows 

the high data-link rate of up to 54 Mbps [3]. The details are discussed in Chapter III. 

3. IEEE 802.11g 

The IEEE 802.11g can be thought of as a hybrid between IEEE 802.11a and IEEE 

802.11b. Similar to IEEE 802.11b, it operates in the 2.4 GHz ISM band. For the data-link 

rate of 11 Mbps and below, it uses the same DSSS technology as IEEE 802.11b. At a 

data-link rate greater than 11 Mbps, up to 54 Mbps, it uses the OFDM technique similar 

to IEEE 802.11a. Due to this property of being backward compatible to IEEE 802.11b, it 

is ideal for organization transitioning from an 11 Mbps network to 54 Mbps. On the other 

hand, IEEE 802.11g uses the 2.4 GHz ISM band, which is congested and limited to three 

frequency channels. Despite having a longer range, it has less system capacity and would 

most likely experience more interference [5].  

4. IEEE 802.11i Draft 

The IEEE 802.11i is an addendum to the 802.11 standard that specifies new secu-

rity protocols. The draft is almost complete and is unlikely to change significantly. Cur-

rently, the only available security protocol is Wired Equivalent Privacy (WEP), which is 

considered to be very vulnerable. The IEEE 802.1x with Extensible Authentication Pro-

tocol (EAP) and per-session key distribution forms a key part of the IEEE 802.11i [1]. 

This new type of secured wireless network is called a Robust Security Network (RSN). 

Currently, no RSN-capable products are available. As an interim solution to RSN, Wi-Fi 

has adopted the interim solution of Wi-Fi Protected Access (WPA), which makes use of 

Temporal Key Integrity Protocol (TKIP). The WEP and WPA are discussed in details in 

the following sections [6]. 
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5. Summary of IEEE Standards 

The following table summarizes the main 802.11 IEEE standard. 

 

 802.11 802.11b 802.11a 802.11g 
Standard 
Approved 

July  
1997 

September 
1999 

September 
1999 

November 
2002 

Frequency 2.4 GHz 2.4 GHz 5 GHz 2.4 GHz 
Available 
Bandwidth 

83.5 MHz 83.5 MHz 300 MHz 83.5 MHz 

Number of 
non-
Overlapping 
Channels 

3 (Indoor/ 
Outdoor) 

3 (Indoor/ 
Outdoor) 

4 (Indoor)  
4 (Indoor/  
Outdoor) 
4 (Indoor/ 
Outdoor) 

3 (Indoor/ 
Outdoor) 

Data-link 
Rates 

1, 2 Mbps 5.5, 11 Mbps 6, 9, 12, 18, 
24, 36, 48, 54 

Mbps 

6, 9, 12, 18, 
24, 36, 48, 54 

Mbps 
Modulation FHSS, DSSS DSSS OFDM DSSS, OFDM 

Table 1.   Summary of IEEE Standards (After Ref. 1.) 

 

D. 802.11 SECURITY 

The IEEE 802.11 wireless LAN is a double-edged sword. The wireless users gain 

mobility at the expense of greater security risk. In the beginning, the IEEE 802.11 task 

group defined only one protocol for security – Wired Equivalent Privacy (WEP). Most 

equipment on the market provides WEP only. More recently, the IEEE 802.11i task 

group has been defining a new type of wireless network called a Robust Security Net-

work (RSN) to replace the WEP. However, it is still a draft and cannot be implemented 

yet. The security protocols currently available are WEP and WPA [6]. 

1. WEP 

For most users, WEP is the only security protocol available. WEP is based on the 

Rivest Cipher 4 (RC4) algorithm, which is a symmetric stream cipher; i.e., both encryp-

tion and decryption share the same keys. Despite the security weaknesses associated with 

the WEP, it has the following advantages [6]: 
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• It is self-synchronizing for each message. This property is critical for a 
data-link-level encryption algorithm for which the “best effort” delivery is 
assumed. 

• It is efficient and can be implemented in either hardware or software. 

• The strength of its security relies on the difficulty of discovering the secret 
key through a brute-force attack.   

The IEEE 802.11 standard specifies that WEP uses a 40-bit encryption key. 

Manufactures made nonstandard extensions by using 104-bit keys, which are usually re-

ferred to as “128-bit” security. This discrepancy is due to the Initialization Vector (IV) of 

24 bits. It is incorrect to state that “128-bit” security is used because the value of the IV is 

transmitted openly with the encrypted frames [6]. 

There are two parts to WEP security – the authentication and the encryption 

phase. As authentication is carried out openly, there is no way to verify if the subsequent 

messages are valid and is therefore pointless. This resulted in it being dropped from the 

Wi-Fi specification, despite being in the IEEE 802.11 standard. After association, encryp-

tion is based on RC4 algorithm [5].   

2. RC4 and Initialization Vector (IV) 

The Rivest Cihper 4 (RC4) algorithm is a symmetrical stream cipher. It takes in 

one byte of data and produces an output byte of encrypted data as shown in Figure 4. The 

encrypted stream of data is intended to resemble a sequence of random characters, r

gardless of the input data stream. Decryption is the reverse process and uses the same 

keys as for encryption. Hence, this is called a symmetric algorithm [6].  

e-
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The main advantage of RC4 is that it is easily implemented and does not use 

complicated or time-consuming operations like multiplication. Every packet is initialized 

and encrypted separately. This ensures that any loss of packet will not affect the decryp-

tion of subsequent packets [6].   

The Initialization Vector (IV) is used to prevent fixed-key encryption, which is 

vulnerable from a security viewpoint. The actual key used for the RC4 algorithm is a 

combination of a 24-bit IV and a 104-bit secret key as shown in Figure 5. For each 

packet, the IV changes, resulting in a different RC4 key being used for every packet. Al-

though the IV is transmitted openly, theoretically it is very difficult to break the key 

unless the 104-bit secret key is known. This is based on the condition that the IV is never 

reused [6]. 

 
104-Bit Secret Key24-Bit IV 

 

 
RC4 

Algorithm C B & W $A 

 

Figure 5. Combined RC4 Key Using IV (From Ref. 6.) 

 

3. Weaknesses of WEP 

The three weaknesses of RC4 as used in WEP are IV reuse, RC4 weak keys and 

direct key attack. Using a different IV for every packet is very secure. However, due to 

the limited size of the 24-bit IV, an IV collision is guaranteed after packets. As the 

IEEE 802.11 is capable of transmitting greater than 500 packets in a second, the IV space 

would be exhausted in approximately seven hours. In reality, a collision is likely to occur 

sooner because multiple clients are connected to the same AP. Once the key streams cor-

responding to their respective IV values are known, the packet can be decoded, regardless 

of whether the secret key is 40-bit or 128-bit in length [6].  

242
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RC4 works by creating a table, referred to as the “S-box” with the values 0 to 255. 

It then creates a second 256-byte table with the key, repeating until the table is full. The 

“S-box” is then rearranged based on values in the key table. Ideally, a bit change in the 

key would output a totally different key stream. Each bit should have a 50% chance of 

being different from the previous key stream. However, this was not the case. Some bits 

of the key have larger changes, while others have none. Coupled with the use of the 

changing IV, the probability of using weak keys is high. The use of weak keys can be 

overcome by discarding the first 256 bytes of the key stream. However, the first 256 

bytes of the key stream cannot be discarded, as such a change would render the system 

inoperable with older systems [6].    

The basic idea behind a direct-key attack is exploiting the weak key problems in 

the first few bytes. The plaintext of the first few bytes is usually an IEEE 802.1 LLC 

header. By watching these messages, a correlation can be made between the plaintext, ci-

phertext and secret key bytes, resulting in key extraction. Increasing the key size from 40 

bits to 104 bits does not prevent an attack. It just increases the time taken to extract the 

key by a factor of 2.5 [6].  

From the above, the conclusion that can be drawn about the WEP is that it is inse-

cure and another security protocol is required for the IEEE 802.11. One of the interim 

protocols is the Wi-Fi Protected Access (WPA). 

4. WPA 

Due to the security vulnerability of WEP, Wi-Fi manufacturers decided to re-

placed WEP with WPA. WPA is based in part on the draft 802.11i standard for RSN as it 

employs the Temporal Key Integrity Protocol (TKIP). The WPA is designed to run on 

existing hardware as a software upgrade. This provided a good transition to the eventual 

RSN for which existing Wi-Fi equipment can no longer be used.  

To access WPA networks, all devices require a matching password. The password 

will initiate the encryption process based on TKIP. This is where WPA is substantially 

different from WEP. The TKIP takes the matching password as a starting point and de-

rives its encryption keys mathematically from this. The TKIP regularly changes the en-
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cryption keys so that the same encryption key is never used twice. This all happens auto-

matically and is transparent to the user. These features make WPA more secure than 

WEP. 

E. CHAPTER SUMMARY 

Brief overviews of the IEEE 802.11 standards and their associated security proto-

cols were presented. The vulnerability of the WEP and using the WPA as an interim solu-

tion prior to RSN were also discussed. The next chapter discusses the IEEE 802.11a stan-

dard, which includes key parameters of the standard, as well as the composition and func-

tions of the MAC and PHY layer.  
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III. IEEE 802.11A 

A. CHAPTER OVERVIEW 

This chapter provides an overview of the IEEE 802.11a standard, which includes 

key parameters of the standard, as well as the composition and functions of the MAC and 

PHY layer. 

B. IEEE 802.11A OVERVIEW 

 Due to the rapid crowding of the 2.4 GHz ISM band and to achieve a higher data-

link rate, the IEEE 802.11a standard was developed to operate in the 5 GHz U-NII band. 

The IEEE 802.11a standard employs Orthogonal Frequency Division Multiplexing 

(OFDM). Several subcarriers are sent in parallel using the Inverse Fast Fourier Transform 

(IFFT) and received using the Fast Fourier Transform (FFT) [7,8]. 

1. Specification 

 The IEEE 802.11a standard provides a variable data-link rate of 6, 9, 12, 18, 24, 

36, 48 and 54 Mbps. The data-link rate of 6, 12 and 24 Mbps are mandatory in the stan-

dard. Tables 2 and 3 show the list of key parameters for the IEEE 802.11a standard [7]. 

A total of 52 OFDM subcarriers are used – 48 data subcarriers and 4 pilot tone 

subcarriers. The pilot tones are used at the receiver to estimate the residual phase error for 

the purpose of receiver synchronization. The IEEE 802.11a standard uses a variety of 

modulation techniques to achieve the data-link rate of 6 to 54 Mbps. The modulation 

techniques available are Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Key-

ing (QPSK), 16 Quadrature Amplitude Modulation (QAM) and 64-QAM. Forward Error 

Correction (FCC), employing convolution coding is used with a coding rate of 1/2, 2/3 

and 3/4 [7].  
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Table 2.   Rate-dependent Parameters (From Ref. 7.) 

 

 

Table 3.   Timing-related Parameters (From Ref. 7.) 
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2. OFDM Physical Layer (PHY) Architecture 

The main purpose of the OFDM PHY is to transmit Media Access Control 

(MAC) Protocol Data Units (MPDUs), under the direction of the 802.11 MAC layer. The 

OFDM PHY of the IEEE 802.11a standard is divided into the two following sublayers 

[7]: 

• Physical Layer Convergence Protocol (PLCP) 

• Physical Medium Dependent (PMD)     

The MAC layer of the IEEE 802.11a standard exchanges information with the 

PLCP, using specific primitives through a PHY service access point. Under instruction of 

the MAC layer, the PLCP prepares the MPDUs for transmission. The PLCP also delivers 

incoming frames from the wireless medium to the MAC layer. The PLCP minimizes the 

dependence of the MAC layer on the PMD sublayer, by mapping MPDU into PLCP Pro-

tocol Data Unit (PPDU). The PPDU is a frame format suitable for transmission by the 

PMD. Figure 6 illustrates this process [7]. 

 

 

Figure 6. PPDU in IEEE 802.11a (After Ref. 7.) 
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 The PPDU is unique to the OFDM PHY. It includes [7]: 

• PLCP Preamble. This field is used to train and synchronize the demodula-

tor for the purpose of acquiring incoming OFDM signal. The PLCP pre-

amble is made up of ten short and two long symbols. The short symbols 

are used to train the receiver’s Automatic Gain Control (AGC) and to pro-

vide a coarse estimate of the channel carrier frequency. The long symbols 

are used to fine-tune the channel carrier frequency [7]. 

• SIGNAL. There is a total of 24 bits in this field. This field contains infor-

mation on the rate and length of the PHY Service Data Unit (PSDU). To 

ensure reliable reception, the SIGNAL is transmitted using the lowest rate. 

The first four bits (R1-R4) encode the rate and the fifth bit (R5) is a re-

serve bit. The following 12 bits (R6-R17) encode the length in bytes of the 

PSDU. The 18th bit is a parity check bit and the last six tail bits (R19-R24) 

flush the convolutional encoder and terminate the code trellis in the de-

coder [7]. 

• DATA. This field consists of 16 bits of service field, the encoded PSDU, 

six tail bits and optional padding bits. The data is transferred at a rate 

specified in the signal field [7].  

 The PLCP directs the PMD to transmit and receive the PHY entities between two 

stations through the wireless medium. To achieve this, the PMD needs to interface di-

rectly with the “air medium,” as well as modulates or demodulates the transmission of 

each frame. The PLCP communicates with the PMD, using service primitives to deter-

mine the functions of transmission or reception [7].   

3. MAC Layer 

 The IEEE 802.11a standard specifies the use of Carrier Sense Multiple Access 

with Collision Avoidance (CSMA-CA). This is the same MAC technology as IEEE 

802.11b. The CSMA-CA protocol avoids signal collision by requesting authorization for 

transmission for a specific amount of time prior to sending the information. The sender 
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broadcasts a request-to-send (RTS) frame, specifying the length of its signal. Upon re-

ceiving the clear-to-send (CTS) frame from the receiver, the sender transmits its informa-

tion. Other devices in the area that also receive the CTS are aware that another sender is 

transmitting, and wait for the specified time duration to pass before contesting for infor-

mation transfer [7]. 

 

C. CHAPTER SUMMARY 

This chapter provided an overview of the IEEE 802.11a standard. This included 

key parameters of the standard, as well as the composition and functions of the MAC and 

PHY layer. The next chapter will provide an overview of the development of the proto-

type systems and all the tools used for data collection. 
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IV. PROTOTYPE SYSTEMS  

A. CHAPTER OVERVIEW 

This chapter introduces the two prototype systems and their specifications – the 

Cisco Aironet 1400 wireless bridge and the Proxim Tsunami MP.11a wireless system. 

The supporting hardware and software used in this research are also discussed. These in-

clude the Xantrex Power Pack 400 Plus, the Socket GPS receiver with Bluetooth wireless 

technology, the “Microsoft Streets” software, and the File Transfer Protocol (FTP) soft-

ware, “GuildFTPd FTP Deamon.” 

B. CISCO AIRONET 1400 WIRELESS BRIDGE 

The Cisco Aironet 1400 wireless bridge was designed to provide high-speed data-

link rates in harsh outdoor environments, commonly on rooftops or radio towers. It oper-

ates in the 5.725 to 5.825 MHz U-NII band (four non-overlapping channels) with a vari-

able data-link rate of 6 to 54 Mbps. Two bridges can be stacked to achieve a higher data-

link rate. The wireless radio and antenna are housed in the same ruggedized housing, 

weighing five kilograms. The following sections describe the key specifications that are 

necessary for analyzing the performance and integrating the system onto military plat-

forms [9]. 

1. Components 

The Cisco Aironet 1400 wireless bridge is composed of three simple components 

– the bridge (consisting of the integrated wireless radio and antenna), the power injector, 

and the RF cables. Due to attenuation loss in the RF cables, Cisco’s specification limits 

the cable length to 100 m, when used with this power injector. Figures 7, 8 and 9 show 

the Cisco Aironet 1400 wireless bridge, power injector, and RF cables, respectively [9]. 
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Figure 7. Cisco Aironet 1400 Wireless Bridge (From Ref. 9.) 

 
 

 

Figure 8. Cisco Aironet 1400 Power Injector (From Ref. 9.) 

 

 

 

 

Figure 9. Cisco Aironet 1400 RF Cables (From Ref. 9.) 
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2. Receiver Sensitivity 

Table 4 shows the Cisco Aironet 1400 wireless bridge’s required receiver sensi-

tivity for the IEEE 802.11a radio at the respective data-link rate. Table 4 assumes a 

packet length of 3,200 bytes with a 10% Packet Error Rate (PER) [9]. 

 

Data-link Rate (Mbps) Receiver Sensitivity (dBm) 

6 − 83 

9 − 83 

12 − 83 

18 − 82 

24 − 79 

36 − 76 

48 − 72 

54 − 70 

Table 4.   Cisco Aironet 1400 Wireless Bridge’s Receiver Sensitivity 

 versus Data-link Rate (From Ref. 9.) 

3. Power Settings 

Table 5 shows the seven available power settings for the Cisco Aironet 1400 

wireless bridge, both in decibel (dBm) and milliwatts (mW) [8].  

 

Power Setting (dBm) Power (mW) 

24 250 

23 200 

22 155 

21 125 

18 60 

15 30 

12 15 

Table 5.   Cisco Aironet 1400 Wireless Bridge’s Transmit   

 Power Settings (From Ref. 9.) 
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4. Key Integration Specifications 

In order to integrate this prototype in military platforms, key specifications like 

dimension, weight, operating environments (temperature, altitude and vibration) and 

power consumption are necessary. Table 6 summarizes these key integration specifica-

tions [9]. 

 

Key Integration Parameters Value 

Dimension 29 cm x 29 cm x 11 cm 

Weight 5 kg 

Operational Temperature − 30o to +55o 

Operational Altitude 4206 m 

Vibration 0.001 G2/Hz from 5 – 100 Hz 

Power  60 – 80 W 

Table 6.   Cisco Aironet 1400 Wireless Bridge’s Key Integration  

 Parameters (After Ref. 9.) 

 

5. Received Signal Strength 

The Cisco Aironet 1400 wireless bridge is equipped with a Received Signal 

Strength Indicator (RSSI). The RSSI displays a DC voltage that is proportional to the re-

ceived signal strength, and is used for directional antenna alignment. Figure 10 shows the 

relationship between the received signal strength and the measured RSSI as given by data 

in [9].  

22 



 

Figure 10. Cisco Aironet 1400 Wireless Bridge’s Received Signal Strength versus 
Measured RSSI (After Ref. 9.) 

 

C. PROXIM TSUNAMI MP.11A WIRELESS SYSTEM 

The Proxim Tsunami MP.11a wireless system is robust and affordable and de-

signed to provide high-speed data-link rates in an outdoor environment. It operates in 

three frequency bands: 5.25 to 5.35 GHz (four channels), 5.47 to 5.725 GHz (11 chan-

nels), and 5.725 to 5.850 GHz (four channels). It has a variable data-link rate of 6 to 54 

Mbps, with an optimal performance achieved at 36 Mbps. When used in the United 

States, only eight frequencies are available: 5.28, 5.30, 5.32, 5.745, 5.765, 5.785, 5.805, 

and 5.825 GHz [10]. 

The Proxim Tsunami MP.11a wireless system consists of a Base Station Unit 

(BSU) and at least one Subscriber Unit (SU). The following sections describe the key 

specifications that are necessary for the performance analysis and integration onto mili-

tary platforms [10]. 
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1. Components 

The Proxim Tsunami MP.11a wireless system is composed of two simple compo-

nents, the Tsunami MP.11a wireless router and radio and a high-gain directional antenna 

(15 dBi). Figures 11 and 12 show these components, respectively [10]. 

 

Figure 11.  Proxim Tsunami MP.11a Wireless Router and Radio (From Ref. 10.) 

 

 
 

Figure 12. Proxim Tsunami MP.11a High-gain Directional Antenna (From Ref. 10.) 

 

2. Receiver Sensitivity 

Table 7 shows the Proxim Tsunami MP.11a wireless system’s required receiver 

sensitivity for the respective radio’s data-link rate. Table 7 assumes a packet length of 

1,000 bytes with a 10% Packet Error Rate (PER) [10]. 
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Data-link Rate (Mbps) Receiver Sensitivity (dBm) 

6 − 87 

9 − 86 

12 − 85 

18 − 83 

24 − 80 

36 − 76 

48 − 72 

54 − 68 

Table 7.   Proxim Tsunami MP.11a Wireless System’s Receiver Sensitivity 

versus Data-link Rate (From Ref. 10.) 

3. Power 

The power output for the Proxim Tsunami MP.11a varies with the data-link rate. 

Table 8 shows the power output at each data-link rate for the respective frequency [10].  

 

Power Output (dBm) versus 
Data-link Rate (Mbps) 

Frequency / Channels 

54 48 36 6-24 

5.25 – 5.35 GHz (56 and 60) 14.5 15.5 17.4 17.4 

5.25 – 5.35 GHz (64) 12.5 12.5 12.5 12.5 

5.47 – 5.725 GHz (100, 104, 108, 112, 116, 
120, 124, 128, 132, 136 and 140) 

14.5 15.5 17.5 17.5 

5.725 – 5.850 GHz (149, 153, 157 and 161) 13.5 15.5 17.5 18.5 

5.725 – 5.850 GHz (165) 12.5 15.5 17.5 17.5 

Table 8.     Proxim Tsunami MP.11a Radio Output Power versus  

 Data-link Rate (From Ref. 10.) 

The transmitted power can be changed using the Graphical User Interface (GUI). 

The available power settings are “Max” (0 dB), “One Half” ( − 3 dB), “One Quarter” ( − 6 

25 



dB), “One Eighth” ( 9 dB), and “Minimum” (− − 10 dB). Figure 13 shows the screen cap-

ture of the power setting [10]. 

−

 

Figure 13. Screen Capture of Tsunami MP.11a Power Settings 

4. Key Integration Specifications 

Table 9 summarizes the key integration specifications for military platforms. 

These specifications include dimension, weight, operating temperature and power con-

sumption [10].  

 

Key Integration Parameters Value 

Radio Dimension 21.5 cm x 17.5 cm x 4 cm 

Antenna Dimension 33.0 cm x 9.3 cm x 2.1 cm 

Weight 1.08 kg 

Operational Temperature 20o to +75o 

Power  10 – 30 W 

Table 9.   Proxim Tsunami MP.11a Wireless System’s Key Integration 

 Parameters (After Ref. 10.) 
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The Proxim Tsunami MP.11a wireless system is lighter in weight and consumes 

less power. This makes it ideal for a soldier to transport it. However, due to its smaller 

EIRP and antenna gain, inferior performance is also expected. 

5. Received Signal Strength 

Just like the Cisco Aironet 1400 wireless bridge, the Proxim Tsunami MP.11a 

wireless system uses the Received Signal Strength Indicator (RSSI). However, the RSSI 

is implemented in the Graphical User Interface (GUI) for the Proxim Tsunami MP.11a 

wireless system. The “Link Test” is used to collect the RSSI value. Figure 14 shows the 

screen capture of this “Link Test.” To convert the RSSI to received signal strength, the 

RSSI value is subtracted by 92 ( Received Signal Strength [dBm] RSSI 92= − ) [10]. 

 

 

Figure 14. Screen Capture of Tsunami MP.11a “Link Test” 

 

D. XANTREX POWER PACK 400 PLUS 

This research was conducted at remote locations without an AC power supply. 

Therefore, there was a requirement for a portable battery pack. The Xantrex power pack 

has two AC output sockets of 115V (nominal), providing a maximum continuous power 
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output of 320 W. Based on a power consumption of 60 W, the Cisco Aironet 1400 wire-

less bridge can remained powered for two to three hours. In order to collect one set of 

data, two power packs were required. Figure 15 shows the Xantrex Power Pack 400 Plus 

[11].      

 

 

Figure 15. Xantrex Power Pack 400 Plus (From Ref. 11.) 

 

E. SOCKET GPS RECEIVER WITH BLUETOOTH WIRELESS 
TECHNOLOGY 

In this research, there was a requirement to determine the distance separation be-

tween the root bridge and the non-root bridge. The Socket GPS receiver with Bluetooth 

wireless technology was used in this research. Together with the “Microsoft Streets” 

software (discussed in the next section), the distance separation calculation is automated. 

Moreover, with Bluetooth wireless technology, the GPS receiver need not be in the same 

location as the computer (within 10 m). Figure 16 shows the Socket GPS receiver [12].     

 

Figure 16. Socket GPS Receiver (From Ref. 12.) 
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F. MICROSOFT STREETS 

The Microsoft Streets software provides a detailed two-dimensional street map of 

the northern United States. It interfaces with the Socket GPS receiver via Bluetooth wire-

less technology to provide a coordinate location of the test points. Using the built-in fea-

tures, the distance separation is automatically calculated. Figure 17 shows a screen cap-

ture of the Microsoft Streets software, where the distance separation between two test 

points is displayed. 

 

 

Distance Separation 
= 1.58 km 

Figure 17. Screen Capture of Microsoft Streets Software 
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G. GUILDFTPD FTP SERVER SOFTWARE 

The GuildFTPd FTP server software is free software downloaded from the Inter-

net (Download.com). It is a File Transfer Protocol (FTP) server that allows the transfer of 

a large amount of data between the server and client. This free FTP server software was 

selected due to ease of use, and high recommendations from other users. This research 

uses this free FTP server software to determine the effective data throughput for the IEEE 

802.11a wireless radio. Figure 18 shows a screen capture of this FTP server software, 

with data throughput displayed on the top portion of the screen capture. 

 

 

Data throughput

Figure 18. Screen Capture of GuildFTPd FTP Server Software   
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H. CHAPTER SUMMARY 

This chapter introduced the reader to the Cisco Aironet 1400 wireless bridge and 

the Proxim Tsunami MP.11a wireless system, as well as their specifications. The support-

ing hardware and software used in this research were also presented.  

The next chapter presents the field-testing results for the Cisco Aironet 1400 wire-

less bridge. This includes the laboratory setup and testing, the generation of the test plans, 

the field data collected, the observations made, and the conclusions drawn for all three 

operational environments.  
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V. CISCO AIRONET 1400 WIRELESS BRIDGE’S TESTING, 
RESULTS AND DISCUSSIONS 

A. CHAPTER OVERVIEW 

This chapter presents the laboratory setup and testing, the generation of the test 

plans, and the collection of data from field-testing. From the data collected, a perform-

ance analysis was performed to study the signal attenuation, the Packet Error Rate (PER), 

and the effective data throughput under all three operational environments: land, water, 

and vegetation.    

B. LABORATORY SETUP AND TESTING 

The Cisco Aironet 1400 wireless bridge was set up under laboratory conditions to 

ensure the proper integration and functionality between the supporting hardware and 

software with the wireless bridge prior to field-testing. 

Figure 19 shows the laboratory setup of the Cisco Aironet 1400 wireless bridge. 

The equipment on the left of the figure represents the root bridge, which is more com-

monly known as the AP or master. The equipment on the right represents the remote end 

or non-root bridge. Both root and non-root bridge are made up of a wireless bridge, a 

power injector, a notebook, a Xantrex Power Pack, a set of RF cables, an Ethernet cable, 

and two power cables. The root and non-root bridges were placed six meters apart, with 

the power set to the lowest of 12 dBm. The IP addresses of the bridges and notebooks 

were then configured.   

The entire range of data-link rate from 6 to 54 Mbps was tested. Figure 20 shows 

the screen capture of the setting of data-link rate. A particular data-link rate was set by 

selecting the “Require”, with the rest set to “Disable.” To prevent any further compres-

sion, files containing pictures were used and zipped. Two file sizes of approximately 40 

Mbytes and 160 Mbytes were used to observe the effect of the file size on the data 

throughput. It was concluded that both file sizes showed approximately the same data 

throughput. Hence the file size of 40 Mbytes was selected for field-testing. 
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Wireless Bridge (Root) Wireless Bridge (Non-root)

Power Injector Power Injector

RF Cables RF Cables 

Ethernet 

Power Cables Power Cables 

Ethernet 

Sony FTP Server Dell (Remote) 

Xantrex Power Pack Xantrex Power Pack 

Figure 19. Cisco Aironet 1400 Wireless Bridge Laboratory Setup 

 

During initial laboratory testing, the root bridge was set up using a Pentium-I 

computer with 40 Mbytes of RAM. The data throughput for a higher data-link rate was 

very low. Subsequently, the computer was changed to a Pentium-III with 256 Mbytes of 

RAM. Further testing showed a maximum data throughput of approximately 20 Mbps at 

the data-link rate of 54 Mbps. During both setups, a Pentium-IV notebook with 640 

Mbytes of RAM was used in the non-root bridge. 
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Figure 20. Screen Capture of the Setting of the Data-link Rate (Cisco) 

 

C. LAND ENVIRONMENT TESTING 

1. Test Plan 

Using Microsoft Streets, the initial test plan was generated based on a map study 

of the area around NPS with a direct LOS. A search radius of three kilometers was cho-

sen, based on the assessment that a direct LOS could not be achieved for a distance 

greater than three kilometers (map study) and due to the logistic constraints of working 

alone. The remote-end antenna height was also fixed at approximately two meters. This is 

similar to an operational condition, in which the need to raise an antenna is eliminated to 

prevent the spotting of the antenna. Ten preliminary test points were selected.  

As Microsoft Streets’ altitude data was assessed to be inaccurate, an on-the-

ground check had to be conducted to determine if any signal was received at the ten se-

lected preliminary test points. The root Cisco Aironet 1400 wireless bridge was set up on 

the roof of Spanagel Hall and the remote end was set up sequentially at the ten prelimi-
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nary test points. During the preliminary checks, a data-link rate of 6 Mbps was set due to 

its robustness. Figure 21 shows all the ten test points: the junction of Eighth Street and 

Ocean Avenue, the Monterey Peninsula College (MPC), the El Estero Park, the wharf, 

the junction of Watson Street and Franklin Street, the Defense Language Institute (DLI), 

the Del Monte Beach, the Hilby pond, the Best Western at the Beach, and the Bay Street 

along the coast of Monterey Bay.  

On-the-ground checks revealed that only test points one to six had a direct LOS 

and managed to register some signal strength. Test points seven, nine, and ten did not 

have LOS due to the small knoll leading to Del Monte Beach. Test point eight was 

slightly out of sight and also received no signal.  An additional test point at NPS’s base-

ball field (0.8 km) was also checked. With slight foliage blockage, a large fluctuation of 

signal strength was observed. An attempt to carry out a file transfer was impossible due 

to the unstable nature of the link.  

 

Figure 21. Preliminary Test Points (Land) 
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From the preliminary check, it was concluded that a direct LOS was critical and 

essential for IEEE 802.11a networks. After these preliminary checks, it was determined 

that only test points one to six would be used for actual field data collection. Finally, with 

the remote antenna’s height set at two meters, the range performance of the wireless 

bridge was expected to be less than the stated specifications in the data sheet. 

2. Overall Performance Data 

Test points one to six were used for field data collections, with a maximum range 

of three kilometers. The performance data for the Cisco Aironet 1400 wireless bridge in a 

land environment is summarized in Table 10. The distance separation was determined us-

ing GPS and Microsoft Streets. The received signal strength in dBm was converted from 

the Received Signal Strength Indicator (RSSI) voltage recorded (see Figure 10). The 

maximum data-link rate, the maximum data throughput, and the average Packet Error 

Rate (PER) were measured and recorded from the FTP server software and the Cisco Ai-

ronet 1400 wireless bridge Graphical User Interface (GUI).   

 
Test 
Point 

Range 
(m) 

Received 
Signal 

Strength 
(dBm) 

Maximum Data-
link Rate (Mbps) 

Maximum Data 
Throughput 

(Mbps) 

Average 
PER 
(%) 

1   300 − 23 54 20.33 3.51 

2   700 − 26 54 20.80 3.37 

3 1,000 − 38 54 19.98 5.57 

4 1,600 − 48 54 19.64 5.92 

5 2,350 − 53 54 19.23 7.49 

6 3,000 − 58 54 19.05 7.60 

Table 10.   Overall Measured Performance Data in a Land Environment 

(Cisco) 
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3. Received Signal Strength 

The measured received signal strength versus range at the respective test points is 

plotted in Figure 22 (The straight-line segments just join the data points.). The measured 

received signal strength decreased with increasing range. 

 

Figure 22. Measured Signal Strength at Receiver versus Range (Cisco – Land) 

 

From the graph in Figure 22, it was observed that the first two test points achieved 

better-measured received signal strength. The reasons for these observations were as-

sessed to be the proximity of both test points to the root wireless bridge.  

4. Maximum Data-link Rate  

From Table 10, the data-link rate of 54 Mbps was achieved up to the range of 

three kilometers in a land environment.    
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5. Maximum Data Throughput and Packet Error Rate 

Figures 23 and 24 show the maximum measured data throughput and measured 

average packet error rate versus range at all six test points. From these graphs, it was ob-

served that the packet error rate increased with increasing range. This in turn led to lower 

data throughput. It was also observed that test point two had lower packet error rate and 

higher data throughput than test point one. One possible reason for this observation was 

the multipath effect. Based on the better-than-expected received signal strength, it was 

assessed that test point two was adding multipath signals constructively, leading to better 

performance.   

It was concluded that the average measured data throughput for the data-link rate 

of 54 Mbps at distances up to three kilometers was approximately 20 Mbps and the aver-

age measured packet error rate was approximately 5.5%. 

 

 

Figure 23. Maximum Measured Data Throughput versus Range (Cisco – Land) 
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Figure 24. Measured Average Packet Error Rate versus Range (Cisco – Land) 

6. Data Throughput versus Data-link Rate 

Table 11 consolidates the measured performance data collected on data through-

put achieved over the entire range of data-link rate (6 to 54 Mbps). These performance 

data were collected for all six test points.   

 

Data Throughput (Mbps) at Varying Data-link Rates (Mbps) Test 
Point 

Range 
(m) 6 9 12 18 24 36 48 54 

1   300 2.76 5.03 5.85 8.50 10.69 14.84 18.85 20.33 

2   700 2.73 4.84 5.83 8.18 10.15 14.23 17.78 20.80 

3 1,000 2.69 4.75 5.58 8.13 10.07 14.12 18.01 19.98 

4 1,600 2.66 4.69 5.42 8.00 10.03 14.15 17.70 19.64 

5 2,350 2.69 4.66 5.38 8.19 10.39 14.17 18.31 19.23 

6 3,000 2.63 4.70 5.28 8.15 10.27 14.08 17.60 19.05 

Average Data 
Throughput 

2.69 4.78 5.56 8.19 10.27 14.27 18.04 19.84 

Table 11.   Measured Data Throughput versus Data-link Rates at  

 Various Ranges (Cisco – Land) 
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Figure 25 plots the measured data throughput achieved over the entire range of 

data-link rate (6 to 54 Mbps). Test Points one to six are plotted in red, blue, magenta, 

green, black and light blue, respectively. From the graph, it was observed that the data 

throughput at any given data rate degraded as distance increased. However, this degrada-

tion was insignificant. The average measured data throughputs achieved for 6, 9, 12, 18, 

24, 36, 48 and 54 Mbps were 2.69, 4.78, 5.56, 8.19, 10.27, 14.27, 18.04 and 19.84 Mbps, 

respectively. It was also concluded that as the data-link rate increased, the data through-

put deviated further from theoretical values.  

At lower data-link rates, the data throughput achieved for all six test points were 

very close to one other. At a higher data-link rate (especially 54 Mbps), the deviation be-

tween the data throughput recorded at different test points was greater. One possible rea-

son for this is that, at 54 Mbps, the modulation technique used is 64-QAM, which is more 

prone to noise or interference. Therefore, at a larger range the effect is more severe. 

 

 

Figure 25. Plot of the Measured Data Throughput versus Data-link Rates at  
 Various Ranges (Cisco – Land) 
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7. Effect of WEP on Performance 

The effect of using WEP on data throughput was recorded as part of the field-

testing. Test Point one was used for this test because it had the best-received signal 

strength. Table 12 shows the measured data throughput achieved when WEP (40-bit and 

128-bit) was used at various data-link rates. Figure 26 shows the plot, where no WEP, 40-

bit WEP and 128-bit WEP are plotted in red, blue and green, respectively. 

 

Data Throughput (Mbps) at Varying Data-link Rates (Mbps) 
WEP 

6 9 12 18 24 36 48 54 

  No 2.76 5.03 5.85 8.50 10.69 14.84 18.85 20.33 

  40-Bit 2.78 5.05 5.85 8.56 10.85 15.50 19.00 20.60 

128-Bit 2.78 5.05 5.90 8.60 10.91 15.80 19.05 20.77 

Table 12.   Effect of WEP on Measured Data Throughput (Cisco – Land) 

 

Figure 26. Plot of the Effect of WEP on Measured Data Throughput (Cisco – Land) 
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From Figure 26, it was observed that, at a data-link rate of 18 Mbps and below, 

the data throughput recorded for using WEP (40-bit and 128-bit) was very similar to that 

recorded without the use of WEP. As the data-link rate increased above 18 Mbps, the use 

of WEP improved data throughput slightly. It was also observed that 128-bit WEP per-

formed marginally better than 40-bit WEP. The WEP, using RC4, is a symmetrical 

stream cipher. One byte of data input will generate one byte of encrypted data output. 

Hence the data throughput was not degraded. 

Table 13 shows the packet error rate recorded when WEP (40-bit and 128-bit) 

was used at various data-link rates. Figure 27 shows the plot, where no WEP, 40-bit WEP 

and 128-bit WEP are plotted in red, blue and green, respectively. 

 

Packet Error Rate (%) at Varying Data-link Rates (Mbps) 
WEP 

6 9 12 18 24 36 48 54 

  No 3.59 3.61 3.60 3.49 3.68 3.06 2.45 2.20 

  40-Bit 3.56 3.60 3.60 3.49 3.55 2.80 2.30 1.98 

128-Bit 3.56 3.60 3.60 3.50 3.45 2.45 2.25 1.77 

Table 13.   Effect of WEP on Measured Packet Error Rate (Cisco – Land) 

 

Figure 27. Plot of the Effect of WEP on Measured Packet Error Rate (Land) 
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From Figure 27, it was observed that, for a data-link rate of 18 Mbps and below, 

the packet error rate was almost identical. This was regardless of whether WEP was used 

or not. However, as the data-link rate increased above 18 Mbps, using WEP decreased 

the packet error rate slightly. The 128-bit WEP was also observed to perform marginally 

better than the 40-bit WEP. This observation was consistent with the observation made in 

Figure 26, where better data throughput was observed above 18 Mbps. 

Contrary to theory, the field data recorded showed that the use of WEP with 

QAM (24 to 54 Mbps) improved the performance marginally. Despite this observation, 

the only conclusion that could be drawn from this test was that using WEP did not de-

grade the performance of the IEEE 802.11a network. As the improvement in performance 

was so marginal and coupled with the limited field data collected, the observation made 

was most likely due to ever-changing environmental conditions.   

8. Effect of Packet Length Variation on Performance 

At test point one, where the best-received signal strength was recorded, the effect 

of the varying packet length on the data throughput and the packet error rate was exam-

ined. Tables 14 and 15 consolidate the field data collected for the data throughput and the 

packet error rate. Figures 28 and 29 show the plots, where the red line represents a packet 

length of 4,000 bytes and the blue line represents a packet length of 1,600 bytes.  

 

Data Throughput (Mbps) at Varying Data-link Rates (Mbps) Packet Length 
(bytes) 6 9 12 18 24 36 48 54 

1600 2.76 5.03 5.85 8.50 10.69 14.84 18.85 20.33 

4000 2.55 4.80 5.50 8.20 10.32 14.66 18.68 19.80 

Table 14.   Effect of Packet Length on Measured Data Throughput  

 (Cisco – Land) 
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Packet Error Rate (%) at Varying Data-link Rates (Mbps) Packet Length 
(bytes) 6 9 12 18 24 36 48 54 

1600 3.59 3.61 3.60 3.49 3.68 3.06 2.45 2.20 

4000 7.63 7.62 7.67 7.64 7.78 7.62 7.05 7.05 

 

Table 15.   Effect of Packet Length on Measured Packet Error Rate  

 (Cisco – Land) 

 

 

Figure 28. Plot of the Effect of Packet Length on Measured Data Throughput  
 (Cisco – Land) 
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Figure 29. Plot of the Effect of Packet Length on Measured Packet Error Rate  
 (Cisco – Land) 

The packet length of 1,600 bytes is the minimum setting for the Cisco Aironet 

1400 wireless bridge. This packet length setting is closest to that of the Ethernet (1,500 

bytes). The packet length of 4,000 bytes is the maximum setting for the bridge. The graph 

in Figure 28 shows that the data throughput for both packet lengths were similar. How-

ever, in Figure 29, the packet error rate for a packet length of 1,600 bytes was substan-

tially lower than that for a packet length of 4,000 bytes.  

This observation is consistent with our theory that a longer packet contains more 

data bits and is therefore expected to face more errors. Moreover, with the same error 

correction technique employed, longer packets also faced lower probability of success. 

Despite the higher packet error rate observed, the data throughput was maintained. This 

was so because each packet was capable of carrying more data bits for the same over-

head.  
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9. Summary 

From the field-testing in a land environment, the following conclusions were 

made: 

• A range of three kilometers was achieved at the data-link rate of 54 Mbps. 

• The maximum measured data throughput achieved at the data-link rate of 
54 Mbps was 20.80 Mbps, with 3.37% PER. 

• The measured data throughput decreased with increasing range. 

• The measured PER increased with increasing range. 

• The average measured data throughput for 6, 9, 12, 18, 24, 36, 48 and 54 
Mbps was 2.69, 4.78, 5.56, 8.19, 10.27, 14.27, 18.04 and 19.84 Mbps, re-
spectively. 

• Using the WEP (40-bit or 128-bit) did not degrade the performance of the 
IEEE 802.11a network. 

• The packet length did not affect the data throughput, but it affected the 
PER. A longer packet resulted in higher PER. 

D. OVER-WATER ENVIRONMENT TESTING 

1. Test Plan 

The test plan for an over-water environment is shown in Figure 30 – the Del 

Monte beach, the Best Western at the Beach, the Bay Street, and the Sandcity along the 

coast of Monterey Bay. The wharf was selected as the root wireless bridge because it pro-

trudes out to sea. This allows field-testing over as much water body as possible. Both 

wireless bridges were at an antenna height of two meters. The only available tall building 

near the wharf is the Marriott Hotel. As this is a private hotel, it was not selected as a test 

point for the root wireless bridge.  

Owing to the low antenna height at both ends of the wireless bridge, the range 

performance was expected to be less. Therefore, the furthest test point selected was at a 

range of 3.85 km. The nearest test point was at a distance of 1.75 km, as no other vehicle-

accessible test points could be located at a distance closer than 1.75 km. Moreover, the 

test points were selected with minimum human traffic. At an antenna height of two me-

ters, human traffic would most likely affect the field-testing data collected.    
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Figure 30. Test Points (Water) 

2. Overall Performance Data 

The performance data for the Cisco Aironet 1400 wireless bridge in an over-water 

environment is summarized in Table 16. The received signal strength, the maximum data-

link rate, the maximum data throughput, and the average PER were measured and re-

corded at each test point.   

 
Test 
Point 

Range 
(m) 

Received 
Signal 

Strength 
(dBm) 

Maximum Data-
link Rate (Mbps) 

Maximum Data 
Throughput 

(Mbps) 

Average 
PER 
(%) 

1 1,750 − 63 54 19.42 6.25 

2 2,700 − 72 24 10.03 9.23 

3 3,400 − 76 18 7.86 9.28 

4 3,850 − 79 12 5.05 15.04 

Table 16.   Overall Measured Performance Data in a Water Environment 

(Cisco) 
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3. Received Signal Strength 

Figure 31 shows the plot of the measured received signal strength versus range. 

The measured received signal strength decreased with increasing range. 

 

Figure 31. Measured Signal Strength at Receiver versus Range (Cisco – Water) 

 

4. Maximum Data-link Rate  

Figure 32 shows the plot of the maximum measured data-link rate achieved versus 

range at the different test points. Only test point one recorded a successful link at the 

data-link rate of 54 Mbps. By varying the power setting, the field-testing showed that the 

receiver sensitivity was approximately 5 dBm lower than its specifications (Table 4).    

 

49 



 

Figure 32. Maximum Measured Data-link Rate versus Range (Cisco – Water) 

 

5. Maximum Data Throughput and Packet Error Rate 

Figures 33 and 34 show the maximum measured data throughput and measured 

average packet error rate versus range at all four test points. Figure 33 shows the maxi-

mum data throughput decreased with increasing range. This was consistent with the 

maximum data-link rate decreasing with increasing range. Figure 34 shows that the 

packet error rate increased with increasing range.   
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Figure 33. Maximum Measured Data Throughput versus Range (Cisco – Water) 

 

Figure 34. Measured Average Packet Error Rate versus Range (Cisco – Water) 
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6. Data Throughput versus Data-link Rate 

Table 17 consolidates the measured performance data collected on data through-

put achieved over the entire range of data-link rate (6 to 54 Mbps) at all four test points.  

Figure 35 plots the measured data throughput achieved over the entire range of data-link 

rates (6 to 54 Mbps). Test points one to four are plotted in red, blue, magenta and green, 

respectively. 

 

Data Throughput (Mbps) at Varying Data-link Rates (Mbps) Test 
Point 

Range 
(m) 6 9 12 18 24 36 48 54 

1 1750 2.78 4.85 5.76 8.45 10.78 14.88 18.28 19.42 

2 2700 2.65 4.76 5.56 8.16 10.03 - - - 

3 3400 2.65 4.70 5.46 7.86 - - - - 

4 3850 2.42 4.38 5.05 - - - - - 

Average Data 
Throughput 

2.63 4.67 5.46 8.16 10.41 14.88 18.28 19.42 

Table 17.   Measured Data Throughput versus Data-link Rates at  

 Various Ranges (Cisco – Water) 

 

Figure 35. Plot of the Measured Data Throughput versus Data-link Rates at  
 Various Ranges (Cisco – Water) 
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Figure 35 shows that data throughput degraded slightly as the distance increased. 

Although the values were similar at lower data-link rates, at a 24-Mbps data-link rate the 

degradation increased. There was no comparison at a data-link rate above 24 Mbps. 

However, based on the graphs and values obtained from the land environment testing, it 

was assessed that a higher deviation of data throughput occurred at a higher data-link 

rate. The average measured data throughput achieved for 6, 9, 12, 18, 24, 36, 48 and 54 

Mbps was 2.63, 4.67, 5.46, 8.16, 10.41, 14.88, 18.28 and 19.42 Mbps, respectively. 

These values were similar to those obtained for the land environment. 

7. Summary 

From the field-testing in an over-water environment, the following conclusions 

were made: 

• A maximum range of 1.75 km was achieved at the data-link rate of 54 
Mbps. 

• The maximum measured data throughput achieved at the data-link rate of 
54 Mbps was 19.42 Mbps, with 6.25% PER. 

• The wireless bridge’s receiver sensitivity was approximately 5 dBm lower 
than the specification stated in Table 4. 

• The measured data-link rate and data throughput decreased with increas-
ing range. 

• The measured PER increased with increasing range. 

• The average measured data throughput for 6, 9, 12, 18, 24, 36, 48 and 54 
Mbps was 2.63, 4.67, 5.46, 8.16, 10.41, 14.88, 18.28 and 19.42 Mbps, re-
spectively. 

E. VEGETATION ENVIRONMENT TESTING  

1. Test Plan 

Based on the operational scenario of ground troops being within 100 m of the 

APC, a site in La Mesa was selected with thick vegetation. Although the composition of 

the vegetation could be different in actual deployment, this site provided a fair assess-

ment on the performance limitation of IEEE 802.11a signals in vegetation. Figure 36 

shows a picture of the test site. The test was performed without LOS and with an antenna 

height of two meters on both sides of the wireless bridge.   
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Figure 36. Picture of the Vegetation Environment  

 

2. Overall Performance Data 

The performance data for the Cisco Aironet 1400 wireless bridge in vegetation is 

summarized in Table 18. The received signal strength, the maximum data-link rate, the 

maximum data throughput, and the average PER were measured and recorded at each test 

point.  

 
Test 
Point 

Range 
(m) 

Received 
Signal 

Strength 
(dBm) 

Maximum Data-
link Rate (Mbps) 

Maximum Data 
Throughput 

(Mbps) 

Average 
PER 
(%) 

1   25 − 41 54 20.93 3.08 

2   50 − 49 54 20.78 3.18 

3   75 − 57 54 20.15 3.89 

4 100 − 67 48 19.70 5.84 

Table 18.   Overall Measured Performance Data in Vegetation (Cisco) 
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3. Received Signal Strength 

Figure 37 shows the plot of the measured received signal strength versus range at 

all test points. The measured received signal strength decreased with increasing range. 

 

Figure 37. Measured Signal Strength at Receiver versus Range (Cisco – Vegetation) 

 

4. Maximum Data-link Rate  

Figure 38 shows the plot of the maximum measured data-link achieved versus 

range at the different test points.  The data-link rate of 54 Mbps was maintained up to a 

distance of 75 m.    
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Figure 38. Maximum Measured Data-link Rate versus Range (Cisco – Vegetation) 

 

5. Maximum Data Throughput and Packet Error Rate 

Figures 39 and 40 show the maximum measured data throughput and measured 

average packet error rate versus range at all four test points. From Figure 39, it was ob-

served that the maximum data throughput decreased with increasing range. This was con-

sistent with the maximum data-link rate decreasing with increasing range. From Figure 

40, it was also observed that the packet error rate increased with increasing range.   
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Figure 39. Maximum Measured Data Throughput versus Range (Cisco – Vegetation) 

 

Figure 40. Measured Average Packet Error Rate versus Range (Cisco – Vegetation) 
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6. Data Throughput versus Data-link Rate 

Table 19 consolidates the measured performance data collected on the data 

throughput achieved over the entire range of the data-link rate (6 to 54 Mbps) at all four 

test points.  Figure 41 plots the measured data throughput achieved over the entire range 

of the data-link rate (6 to 54 Mbps). Test points one to four are plotted in red, blue, ma-

genta and green, respectively. 

 

Data Throughput (Mbps) at Varying Data-link Rates (Mbps) Test 
Point 

Range 
(m) 6 9 12 18 24 36 48 54 

1   25 2.81 5.13 5.85 8.80 10.89 15.04 19.85 20.93 

2   50 2.73 4.96 5.85 8.68 10.65 14.73 19.60 20.78 

3   75 2.65 4.82 5.78 8.63 10.57 14.52 19.42 20.15 

4 100 2.61 4.76 5.52 8.50 10.33 14.50 19.15 - 

Average Data 
Throughput 

2.70 4.92 5.75 8.65 10.61 14.70 19.51 20.62 

Table 19.   Measured Data Throughput versus Data-link Rates at  

 Various Ranges (Cisco – Vegetation) 

 

Figure 41. Plot of the Measured Data Throughput versus Data-link Rates at  
 Various Ranges (Cisco – Vegetation) 
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The graph in Figure 41 shows that measured data throughput degraded slightly as 

distance increased. In vegetation, the data throughput at a higher data-link rate degraded 

less. This could be due to the proximity of the test points to the root wireless bridge. The 

average measured data throughput achieved for 6, 9, 12, 18, 24, 36, 48 and 54 Mbps was 

2.70, 4.92, 5.75, 8.65, 10.61, 14.70, 19.51 and 20.62 Mbps, respectively. 

7. Summary 

From the field-testing conducted in vegetation, the following conclusions were 

made: 

• A maximum range of 75 m was achieved at the data-link rate of 54 Mbps. 

• The maximum measured data throughput achieved at the data-link rate of 
54 Mbps was 20.93 Mbps, with 3.08% PER. 

• The measured data throughput decreased with increasing range. 

• The measured PER increased with increasing range. 

• The average measured data throughput for 6, 9, 12, 18, 24, 36, 48 and 54 
Mbps was 2.70, 4.92, 5.75, 8.65, 10.61, 14.70, 19.51 and 20.62 Mbps, re-
spectively. 

F. CHAPTER SUMMARY  

This chapter presented the laboratory setup and testing, the generation of the test 

plans, the collection of data from field-testing, and the performance analysis. The signal 

attenuation, the packet error rate (PER), and the effective data throughput under all three 

operational environments – land, water, and vegetation – were investigated.  

The next chapter presents the field-testing data for Proxim Tsunami MP.11a wire-

less system and its performance analysis.    
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VI. PROXIM TSUNAMI MP.11A WIRELESS SYSTEM’S 
TESTING, RESULTS AND DISCUSSIONS 

A. CHAPTER OVERVIEW 

This chapter presents the laboratory setup and testing, and the collection of data 

from field-testing for the Proxim Tsunami MP.11a wireless system. A performance 

analysis was conducted on the field data collected to study the signal attenuation, the 

Packet Error Rate (PER), and the effective data throughput under all three operational 

environments – land, water, and vegetation.  

The same test plans for the Cisco Aironet 1400 wireless bridge were used, but the 

effect of the use of encryption on performance was studied under laboratory conditions to 

minimize the amount of time required for field-testing. This was to minimize the distur-

bance to local residents (surrounding NPS) and due to the limited power of the portable 

power pack. This change did not affect the performance study. The effect of using en-

cryption on performance was also repeated for the Cisco Aironet 1400 wireless bridge us-

ing the laboratory setup with similar results observed as for outdoors. The effect of 

packet length variation could not be conducted as the packet size is fixed at 1,504 bytes. 

B. LABORATORY SETUP AND TESTING 

The Proxim Tsunami MP.11a wireless system was set up under laboratory condi-

tions to ensure the proper integration and functionality between the supporting hardware 

and software with the wireless system, prior to field-testing. 

Figure 42 shows the laboratory setup of the Proxim Tsunami MP.11a wireless 

system. The equipment on the left of the figure represents the Base Station Unit (BSU), 

which is similar in function to the root bridge in the Cisco Aironet 1400 wireless bridge. 

The equipment on the right represents the Subscriber Unit (SU) or non-root bridge. Both 

the BSU and SU are made up of a 15-dBi directional antenna, a radio, a notebook, a 

Xantrex Power Pack, a RF cable, an Ethernet cable and two power cables. The BSU and 

SU were placed six meters apart, with power set to the lowest of “Minimum.” This trans-

lates to a 10-dBm reduction in power compared to the normal power setting specified in 
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Table 8. The frequency channel used was 5.805 GHz. This was consistent with the Cisco 

Aironet 1400 wireless bridge.   
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Figure 42. Proxim Tsunami MP.11a Wireless System Laboratory Setup 



The entire range of data-link rate from 6 to 54 Mbps was tested. Figure 43 shows 

the screen capture of the setting of data-link rate. A particular data-link rate was selected 

by clicking on the respective icon. A file size of approximately 40 Mbytes, containing 

zipped pictures, was used to observe the performance of the Proxim Tsunami MP.11a 

wireless system.  

 

 

Figure 43. Screen Capture of the Setting of Data-link Rate (Proxim) 

 

1. Effect of Encryption on Performance 

The Proxim Tsunami MP.11a offers three encryption methods – 64-bit WEP, 128-

bit WEP, and 128-bit Advanced Encryption System (AES). The 64-bit WEP is identical 

to the 40-bit WEP. Just like the 128-bit WEP, the additional 24 bits are needed for the 

initialization vector. Table 20 shows the measured data throughput achieved for the re-

spective encryption methods used at various data-link rates. Figure 44 shows the plot, 

where no WEP, 64-bit WEP, 128-bit WEP, and 128-bit AES are plotted in red, blue, ma-

63 



genta and green, respectively. At the data-link rate of 54 Mbps, the file transfer could not 

be completed, therefore a data throughput of 0 Mbps was recorded.  

 

Data Throughput (Mbps) at Varying Data-link Rates (Mbps) 
Encryption 

6 9 12 18 24 36 48 54 

  No 2.87 5.36 5.87 8.52 9.65 10.94 2.63 0 

  64-Bit WEP 2.80 5.37 5.82 8.25 9.70 10.75 2.58 0 

128-Bit WEP 2.86 5.32 5.77 8.21 9.51 10.78 2.66 0 

128-Bit AES 2.84 5.27 5.85 8.17 9.61 10.47 2.33 0 

Average Data 
Throughput  

2.84 5.33 5.83 8.29 9.62 10.74 2.55 0 

Table 20.   Effect of Encryption on Measured Data Throughput 

 (Proxim – LAB) 

 

Figure 44. Plot of the Effect of Encryption on Measured Data Throughput 
 (Proxim – LAB) 
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Figure 44 shows that the measured data throughput for each data-link rate setting 

was not affected by the use of encryption. The average measured data throughput for the 

data-link rate of 6, 9, 12, 18, 24, 36, 48 and 54 Mbps was 2.84, 5.33, 5.83, 8.29, 9.62, 

10.74, 2.55 and 0 Mbps. It was observed that the maximum data throughput of approxi-

mately 11 Mbps was achieved at the data-link rate of 36 Mbps. At the data-link rate of 48 

Mbps, a data throughput of approximately 2.6 Mbps was obtained. Although the link was 

established at the data-link rate of 54 Mbps, the transfer of the 40-Mbyte file could not be 

completed.   

Table 21 shows the measured packet error rate recorded when encryption was 

used at various data-link rates. Figure 45 shows the plot, where no WEP, 64-bit WEP, 

128-bit WEP, and 128-bit AES are plotted in red, blue, magenta and green, respectively. 

At the data-link rate of 54 Mbps, a PER of 100 % was recorded, as the file transfer could 

not be completed. 

 
Packet Error Rate (%) at Varying Data-link Rates (Mbps) Encryption 

Method 6 9 12 18 24 36 48 54 

  No 0 0 0 0 0 0.15 10.45 100.00 

  64-Bit WEP 0 0 0 0 0 0.00 10.79 100.00 

128-Bit WEP 0 0 0 0 0 0.00 10.61 100.00 

128-Bit AES 0 0 0 0 0 0.09 11.05 100.00 

Average PER 0 0 0 0 0 0.06 10.73 100.00 

Table 21.   Effect of Encryption on Measured Packet Error Rate 

 (Proxim – LAB) 

 

Figure 45 shows the use of encryption did not affect the Packet Error Rate (PER). 

Up to the data-link rate of 36 Mbps, the PER was small. However, at the data-link rate of 

48 Mbps and 54 Mbps, the PER was 10.73% and 100%, respectively. This was consistent 

with the data throughput observed in Figure 44. The main reason for this is that both 

data-link rates use the modulation technique, 64-QAM. Despite QAM’s higher data 
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throughput, it is very sensitive to noise and multipath fading effects, leading to high PER. 

As packets were re-sent many times, the effective data throughput was significantly re-

duced. At the data-link rate of 54 Mbps, the PER was so high that the file transfer could 

not be completed. 

 

 

Figure 45. Plot of the Effect of Encryption on Measured Packet Error Rate 
 (Proxim – LAB) 

 

In summary, this testing shows that establishing a communication link at a high 

data-link rate does not necessarily translate to a higher data throughput. This is only true 

if the equipment is adequately designed to reduce the effects of noise and multipath.     

 

C. LAND ENVIRONMENT TESTING 

1. Overall Performance Data 
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The same test points as the Cisco Aironet 1400 wireless bridge were used. The 

performance data for the Proxim Tsunami MP.11a wireless system in a land environment 



is summarized in Table 22. The received signal strength in dBm was converted from the 

RSSI reading recorded ( Received Signal Strength [dBm] RSSI 92= − ). The maximum 

data-link rate, the maximum data throughput, and the average Packet Error Rate (PER) 

were measured and recorded from the FTP server software and the Proxim Tsunami 

MP.11a wireless system Graphical User Interface (GUI).   

 
Test 
Point 

Range 
(m) 

Received 
Signal 

Strength 
(dBm) 

Maximum Data-
link Rate (Mbps) 

Maximum Data 
Throughput 

(Mbps) 

Average 
PER 
(%) 

1   300 − 55 54 10.85 0.12 

2   700 − 61 54 10.35 0.16 

3 1,000 − 65 48 9.68 0.22 

4 1,600 − 67 48 9.25 0.24 

5 2,350 − 75 36 8.14 0.39 

6 3,000 − 79 24 7.73 0.48 

Table 22.   Overall Measured Performance Data in a Land Environment 

(Proxim) 

 

In Table 22, the maximum measured data throughput for all the test points (less 

test point six) were registered at the data-link rate of 36 Mbps. Although communication 

links were established for both 48 and 54 Mbps, the packet error rates were very high. 

The packet error rate was so high that file transfer could not be completed. The average 

packet error rate disregarded these high packet error rates. This led to the conclusion that 

the Proxim Tsunami MP.11a is not well designed for 64-QAM (48 and 54 Mbps), which 

is consistent with its specification of optimal performance achieved at 36 Mbps (16-

QAM). 
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2. Received Signal Strength 

The measured received signal strength versus range is plotted in Figures 46 at all 

test points. The measured received signal strength decreased with increasing range. 

 

Figure 46. Measured Signal Strength at Receiver versus Range (Proxim – Land) 

3. Optimal Data-link Rate  

From the data collected for the laboratory testing and the land environment field-

testing, it was determined that optimal performance was achieved at the data-link rate of 

36 Mbps.  

4. Maximum Data Throughput and Packet Error Rate 

Figures 47 and 48 show the maximum measured data throughput and measured 

average packet error rate versus range at all six test points. Figure 48 shows that the 

packet error rate increased with increasing range. This in turn led to a lower data 

throughput observed in Figure 47. Thus the maximum data throughput for the optimal 

data-link rate of 36 Mbps at 2.35km was 8.14 Mbps and its average packet error rate was 

0.39%.  
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Figure 47. Maximum Measured Data Throughput versus Range (Proxim – Land) 

 

Figure 48. Measured Average Packet Error Rate versus Range (Proxim – Land) 
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5. Data Throughput versus Data-link Rate 

Table 23 consolidates the measured performance data collected on the data 

throughput achieved over the entire range of the data-link rate (6 to 54 Mbps). These per-

formance data were collected for all six test points. In Table 24, the “-” represents no 

communication link established, while “X” represents that the file transfer was not suc-

cessful or the data throughput was very low.    

Figure 49 plots the measured data throughput achieved over the entire range of 

data-link rate (6 to 54 Mbps). Test points one to six are plotted in red, blue, magenta, 

green, black and light blue, respectively. The graph shows that the data throughput de-

graded as distance increased. The degradation was more severe than that observed for the 

Cisco Aironet 1400 wireless bridge. The average measured data throughput achieved for 

6, 9, 12, 18, 24 and 36 Mbps was 2.55, 4.67, 5.14, 7.45, 8.50 and 9.65 Mbps, respec-

tively.  

 

Data Throughput (Mbps) at Varying Data-link Rates (Mbps) Test 
Point 

Range 
(m) 6 9 12 18 24 36 48 54 

1   300 2.73 5.07 5.49 8.09 9.25 10.85 X X 

2   700 2.62 4.87 5.36 7.82 8.94 10.35 X - 

3 1,000 2.54 4.72 5.10 7.44 8.61 9.68 X - 

4 1,600 2.52 4.55 5.03 7.35 8.54 9.25 X - 

5 2,350 2.47 4.47 4.94 7.17 7.90 8.14 - - 

6 3,000 2.44 4.34 4.91 6.85 7.74 - - - 

Average Data 
Throughput 

2.55 4.67 5.14 7.45 8.50 9.65 - - 

Table 23.   Measured Data Throughput versus Data-link Rates at  

 Various Ranges (Proxim – Land) 
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Figure 49. Plot of the Measured Data Throughput versus Data-link Rates at  
 Various Ranges (Proxim – Land) 

At a lower data-link rate, the data throughput achieved for all six test points was 

closer to one other. At a higher data-link rate, the deviation between the data throughput 

recorded at different test points increased. One possible reason for this is that at a higher 

data-link rate, the modulation technique used is QAM, which is more prone to noise or 

interference. Therefore, over a larger range, the degradation is more severe. An important 

point to note is that file transfer at the data-link rate of 48 and 54 Mbps was either ex-

tremely slow (e.g., 0.48 Mbps) or could not be completed. This led to the conclusion that 

the Proxim Tsunami MP.11a performed well only at the data-link rate of 36 Mbps and 

below. This observation could be due to the lack of height clearance at the subscriber unit 

(remote) and is consistent with the Proxim Tsunami MP.11a’s specifications that optimal 

performance is obtained at the data-link rate of 36 Mbps. 
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6. Summary 

From the field-testing conducted in a land environment, the following conclusions 

were made: 

• A range of 2.35 km was achieved at the data-link rate of 36 Mbps. 
• The maximum measured data throughput achieved at the data-link rate of 

36 Mbps was approximately 10.85 Mbps. 
• The optimal data-link rate was 36 Mbps.  
• The file transfer at the data-link rate of 48 and 54 Mbps was either ex-

tremely slow (e.g., 0.48 Mbps) or could not be completed. 
• Establishing a communication link at a higher data-link rate did not equate 

to a higher data throughput. 
• The measured data throughput decreased with increasing range. 
• The measured PER increased with increasing range. 
• The average measured data throughput for 6, 9, 12, 18, 24 and 36 Mbps 

was 2.55, 4.67, 5.14, 7.45, 8.50 and 9.65 Mbps, respectively. 
 

D. OVER-WATER ENVIRONMENT TESTING 

1. Overall Performance Data 

The performance data for the Proxim Tsunami MP.11a wireless system in an 

over-water environment is summarized in Table 24. The received signal strength, the 

maximum data-link rate, the maximum data throughput, and the average PER were 

measured and recorded at each test point. Compared to the Cisco Aironet 1400 wireless 

bridge, the Proxim Tsunami MP.11a had lower transmitted power and antenna gain. 

Therefore, only test points one and two registered a signal strength and field data.  

An additional test point had to be used (test point 5), which was 250 m from the 

BSU, as no other vehicle-accessible test points could be found between 250 m and 1,750 

m. The maximum data throughput of 10.65 Mbps was achieved at the data-link rate of 36 

Mbps. Similar to the observations made in the land environment, the data throughput for 

the data-link rate of 48 and 54 Mbps were very low.   
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Test 
Point 

Range 
(m) 

Received 
Signal 

Strength 
(dBm) 

Maximum Data-
link Rate (Mbps) 

Maximum Data 
Throughput 

(Mbps) 

Average 
PER 
(%) 

1 1,750 − 80 24 8.54 0.33 

2 2,700 − 87 6 2.51 0.89 

3 3,400 - - - - 

4 3,850 - - - - 

*5 250 − 57 54 10.65 0.20 

Table 24.   Overall Measured Performance Data in a Water Environment 

(Proxim) 

 

2. Received Signal Strength 

Figures 50 shows the plot of the measured received signal strength versus range at 

all test points. The measured received signal strength decreased with increasing range. 

 

Figure 50. Measured Signal Strength at Receiver versus Range (Proxim – Water) 
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3. Optimal Data-link Rate  

Figure 51 shows the plot of the maximum measured data-link achieved versus 

range at the three test points. Only test point one recorded a successful link establishment 

at the data-link rate of 54 Mbps. The optimal data-link rate was 36 Mbps.  

 

 

Figure 51. Maximum Measured Data-link Rate versus Range (Proxim – Water) 

By varying the power setting, the field-testing showed that the receiver sensitivity 

was in accordance with its specifications (Table 7). The field data showed that the opti-

mal data-link rate was 36 Mbps.  

4. Maximum Data Throughput and Packet Error Rate 
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Figures 52 and 53 show the maximum measured data throughput and measured 

average packet error rate versus range at the three test points. Figure 52 shows the maxi-

mum data throughput decreasing with increasing range. This was consistent with the 

maximum data-link rate decreasing with increasing range. Figure 53 shows that the 

packet error rate increased with increasing range.  The maximum measured data through-



put was achieved at the data-link rate of 36 Mbps. At this data-link rate, the packet error 

rate was very low and insignificant. At the higher data-link rate of 48 and 54 Mbps, the 

packet error rate was very high and the data throughput was very low.  

 

Figure 52. Maximum Measured Data Throughput versus Range (Proxim – Water) 

 

Figure 53. Measured Average Packet Error Rate versus Range (Proxim – Water) 
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5. Data Throughput versus Data-link Rate 

Table 25 consolidates the measured performance data collected on the data 

throughput achieved over the entire range of the data-link rate (6 to 54 Mbps) at all three 

test points.   

 
Data Throughput (Mbps) at Varying Data-link Rates (Mbps) Test 

Point 
Range 

(m) 6 9 12 18 24 36 48 54 

1 1,750 2.62 4.97 5.36 7.39 8.54 - - - 

2 2,700 2.51 - - - - - - - 

3 3,400 - - - - - - - - 

4 3,850 - - - - - - - - 

*5 250 2.72 5.09 5.49 8.69 10.65 - - 

Average Data 
Throughput 

2.62 5.03 5.43 7.45 8.62 10.65 - - 

7.51 

Table 25.   Measured Data Throughput versus Data-link Rates at  

 Various Ranges (Proxim – Water) 

Figure 54 plots the measured data throughput achieved over the entire range of 

data-link rate (6 to 54 Mbps) at all three test points. Test Points one to three are plotted in 

red, blue and green, respectively. For the data-link rate of 48 and 54 Mbps, the data 

throughput was either very low or the file transfer could not be completed. The graph 

shows that data throughput degraded slightly as the distance increased. The average 

measured data throughput achieved for 6, 9, 12, 18, 24 and 36 Mbps was 2.62, 5.03, 5.43, 

7.45, 8.62 and 10.65 Mbps, respectively. These values were higher than those obtained 

for the land environment. 
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Figure 54. Plot of the Measured Data Throughput versus Data-link Rates at  Vari-
ous Ranges (Proxim – Water) 

 

6. Summary 

From the field-testing in a water environment, the following conclusions were 

made: 

• The optimal data-link rate was determined to be 36 Mbps.  

• Both data-link rates of 48 and 54 Mbps resulted in a high packet error rate 
and a very low data throughput. Most of the time, the file transfer was not 
successful at these higher data-link rates.  

• Only test point five (additional test point at 250 m) achieved a communica-
tion link at the data-link rate of 36 Mbps. 

• The maximum measured data throughput achieved at the optimal data-link 
rate of 36 Mbps was 10.65 Mbps. 
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• The receiver sensitivity at the respective data-link rate was in accordance 
with the specifications. 

• The measured data-link rate and data throughput decreased with increasing 
range. 

• The measured PER increased with increasing range. 

• The average measured data throughput for 6, 9, 12, 18, 24 and 36 Mbps 
was 2.62, 5.03, 5.43, 7.45, 8.62 and 10.65 Mbps, respectively. 

 

E. VEGETATION ENVIRONMENT TESTING  

1. Overall Performance Data 

The performance data for the Proxim Tsunami MP.11a wireless system in vegeta-

tion is summarized in Table 26. The received signal strength, the maximum data-link 

rate, the maximum data throughput, and the average PER were measured and recorded at 

each test point.  

 
Test 
Point 

Range 
(m) 

Received 
Signal 

Strength 
(dBm) 

Maximum Data-
link Rate (Mbps) 

Maximum Data 
Throughput 

(Mbps) 

Average 
PER 
(%) 

1   25 − 63 54 10.86 0.04 

2   50 − 70 48 10.70 0.05 

3   75 − 74 36 10.38 0.09 

4 100 − 80 24 9.01 0.12 

Table 26.   Overall Measured Performance Data in Vegetation (Proxim) 

2. Received Signal Strength 

Figures 55 shows the plot of the measured received signal strength versus range at 

all test points. The measured received signal strength decreased with increasing range. 
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Figure 55. Measured Signal Strength at Receiver versus Range (Proxim – Vegeta-
tion) 

 

3. Optimal Data-link Rate  

Figure 56 shows the plot of the maximum measured data-link achieved versus 

range at the different test points.  Consistent with the data recorded for the land and water 

environment, the optimal data-link rate was determined to be 36 Mbps.  
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Figure 56. Maximum Measured Data-link Rate versus Range (Proxim – Vegetation) 

4. Maximum Data Throughput and Packet Error Rate 

Figures 57 and 58 show the maximum measured data throughput and measured 

average packet error rate versus range at all four test points. The maximum data through-

put decreased with increasing range and the packet error rate increased with increasing 

range.   

 

Figure 57. Maximum Measured Data Throughput versus Range (Proxim –
Vegetation) 
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Figure 58. Measured Average Packet Error Rate versus Range (Proxim – Vegetation) 

5. Data Throughput versus Data-link Rate 

Table 27 consolidates the measured performance data collected on the data 

throughput achieved over the entire range of data-link rates (6 to 54 Mbps) at all four test 

points. Figure 59 plots the measured data throughput achieved over the entire range of 

data-link rates (6 to 54 Mbps). Test points one to four are plotted in red, blue, magenta 

and green, respectively.   

 

Data Throughput (Mbps) at Varying Data-link Rates (Mbps) Test 
Point 

Range 
(m) 6 9 12 18 24 36 48 54 

1   25 2.84 5.36 5.88 8.60 9.81 10.86 X X 

2   50 2.82 5.30 5.82 8.41 9.59 10.70 X - 

3   75 2.76 5.25 5.81 8.27 9.23 10.38 - - 

4 100 2.74 5.18 5.78 8.04 9.01 - - - 

Average Data 
Throughput 

2.79 5.27 5.82 8.33 9.41 10.65 - - 

Table 27.   Measured Data Throughput versus Data-link Rates at  

 Various Ranges (Proxim – Vegetation) 
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Figure 59. Plot of the Measured Data Throughput versus Data-link Rates at  
 Various Ranges (Proxim – Vegetation) 

Although communication links were established at 48 and 54 Mbps, the data 

throughput was very low and generally the file transfer could not be completed. The 

graph in Figure 59 shows that data throughput degraded with increasing distance. The av-

erage data throughput achieved for 6, 9, 12, 18, 24 and 36 Mbps was 2.79, 5.27, 5.82, 

8.33, 9.41 and 10.65 Mbps, respectively. 

6. Summary 

From the field-testing in vegetation, the following conclusions were made: 

• The optimal data-link rate was 36 Mbps.  

• Both data-link rates of 48 and 54 Mbps resulted in a high packet error rate 
and a very low data throughput. Generally, the file transfer was not suc-
cessful at these higher data-link rates.  

• The maximum range achieved for the optimal data-link rate of 36 Mbps 
was 75 m.  
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• The maximum measured data throughput achieved at the optimal data-link 
rate of 36 Mbps was 10.86 Mbps. 

• The measured data throughput decreased with increasing range. 

• The measured PER increased with increasing range. 

• The average measured data throughput for 6, 9, 12, 18, 24 and 36 Mbps 
was 2.79, 5.27, 5.82, 8.33, 9.41 and 10.65 Mbps, respectively. 

 

F. CHAPTER SUMMARY  

This chapter presented the laboratory setup and testing, the collection of data from 

the field-testing, and the performance analysis carried out for the Proxim Tsunami 

MP.11a wireless system. The signal attenuation, the Packet Error Rate (PER), and effec-

tive data throughput under all three operational environments – land, water, and vegeta-

tion – were investigated.  

The next chapter presents the conclusion to this research and recommendations 

for future research. 
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VII. CONCLUSION AND FUTURE WORKS 

A. CHAPTER OVERVIEW  

This chapter presents the conclusion to this research and recommendations for fu-

ture research. The conclusion includes the performance analysis of both the Cisco Ai-

ronet 1400 wireless bridge and the Proxim Tsunami MP.11a wireless system in all three 

operational environments – land, water, and vegetation.   

B. CONCLUSION  

The objectives of this research were to answer the following questions: 

• What specific commercially available low-cost hardware can be used to 
implement an IEEE 802.11a network outdoor? 

• What is the performance capability of the hardware under various opera-
tional environments? 

• How can the use of directional antennas improve the performance capabil-
ity of the IEEE 802.11a network outdoors? 

 

All the objectives identified at the beginning of this research were answered. 

Commercially available low-cost hardware was used to implement an IEEE 802.11a net-

work outdoors – the Cisco Aironet 1400 wireless bridge and the Proxim Tsunami MP.11a 

wireless system. Both these products were chosen for their superior specifications and 

their company’s reputation in the IEEE 802.11 wireless industry. 

The performances of both these prototype systems were tested under three opera-

tional environments – land, water, and vegetation. From the field data collected, the fol-

lowing conclusions are made: 

• The optimal data-link rate for the Cisco Aironet 1400 wireless bridge and 
the Proxim Tsunami MP.11a wireless system were 54 Mbps and 36 Mbps, 
respectively.  

• At these optimal data-link rates, the average measured data throughputs 
were 20.38 and 10.78 Mbps, respectively.  
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• The receiver sensitivity for the Cisco Aironet 1400 wireless bridge was 
approximately 5 dB less than its specifications. The receiver sensitivity for 
the Proxim Tsunami MP.11a wireless system was in accordance with it 
specifications. 

• The use of longer packet in the Cisco Aironet 1400 wireless bridge re-
sulted in higher packet error rate. Despite this, the data throughput was not 
affected, as each packet was capable of transferring more data bits. 

• For both prototype systems, the effect of the use of encryption (WEP or 
AES) on data throughput was negligible. 

• The measured data throughput decreased and the measured packet error 
rate increased with increasing range. These observations were made for 
both systems. 

 

To address the last question stated in the objectives, all tests were conducted using 

directional antennas. The ranges determined were much higher that those obtained using 

omni-directional antenna in Maj. Goh Che Seng’s research [1]. 

Based on the performance data collected from field-testing, the Cisco Aironet 

1400 wireless system outperforms the Proxim Tsunami MP.11a wireless system, espe-

cially in terms of data throughput performance. This conclusion stands even if the EIRP 

and antenna gain of the Proxim Tsunami MP.11a wireless system is increased to match 

that of the Cisco Aironet 1400 wireless bridge. On the other hand, the Cisco Aironet 1400 

wireless bridge is more costly, heavier and consumes more power. This makes it more 

difficult to integrate onto military platforms. 

The performance data shows that IEEE 802.11a is a viable option for the military 

to implement a high-speed LAN. As shown in this research, the range limitations of the 

higher frequency IEEE 802.11a can be resolved by using a smart directional antenna. The 

data throughput of approximately 20 Mbps meant that more users could be served in a 

cell, compared to the IEEE 802.11b. With the proliferation of IEEE 802.11a equipment, 

better chips with lower power consumption will likely emerge. 
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C. FUTURE WORKS 

During the course of this research, several areas have been identified for future 

work. They are as follows:  

1. Performance of IEEE 802.11a in a Mobile Environment 

To implement a high-speed LAN successfully in the military, the effect of IEEE 

802.11a equipment on moving platforms (UAVs, tanks, trucks, etc.) must be transparent 

to the user. The concerns are the Doppler effects and the handing-over/taking-over algo-

rithm of switching base stations. The performance of the IEEE 802.11a in a mobile envi-

ronment should be studied. 

2. Maximum Number of Users per Base Station  

The maximum number of users that can be supported by each base station and at a 

specific data throughput is another area for further study. This will determine the number 

of base stations that must be deployed in the area of operations.  

3. Interference between Adjacent Frequency Channels 

To exploit the frequency channels available to the IEEE 802.11a, adjacent fre-

quencies must be used to increase the number of users within a cell. In theory, these fre-

quencies are supposed to be orthogonal. Field-data could be collected to determine 

whether adjacent frequencies affect one another (especially using directional antenna), 

leading to a drop in the number of users within a cell.   
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